Formulaire de dérivées usuelles

Lorsqu'on indique "dérivable", cela signifie que la fonction f est dérivable, i.e. que $D_{f'}=D_f$.

	f(x)	D_f	$D_{f'}$	f'(x)		
$(\alpha \in \mathbb{R})$	x^{α}	\mathbb{R}_+^*	dérivable	$\alpha x^{\alpha-1}$		$(avec 0^0 = 1)$
$(n \in \mathbb{N}^*)$	x^n	\mathbb{R}	dérivable	nx^{n-1}		$(avec 0^0 = 1)$
$(n \in \mathbb{N}^*)$	$\frac{1}{x^n} = x^{-n}$	\mathbb{R}^*	dérivable	$-nx^{-n-1}$	$= -\frac{n}{x^{n+1}}$	
(similaire pour $x^{\frac{1}{2p}}$)	$\sqrt{x} = x^{\frac{1}{2}}$	\mathbb{R}_+	\mathbb{R}_+^*	$\frac{1}{2}x^{-\frac{1}{2}}$	$=\frac{1}{2\sqrt{x}}$	
(similaire pour $x^{\frac{1}{2p+1}}$)	$\sqrt[3]{x} = x^{\frac{1}{3}}$	\mathbb{R}	\mathbb{R}^*	$\frac{1}{3}x^{-\frac{2}{3}}$	$=\frac{1}{3x^{2/3}}$	
	x	\mathbb{R}	\mathbb{R}^*	$\frac{x}{ x }$	= signe(x)	
	e^x	\mathbb{R}	dérivable	e^x		
	$\ln x$	\mathbb{R}_+^*	dérivable	$\frac{1}{x}$		
	$\cos x$	\mathbb{R}	dérivable	$-\sin x$		
	$\sin x$	\mathbb{R}	dérivable	$\cos x$		
$D_{\tan} = \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$	$\tan x$	$D_{ m tan}$	dérivable	$1 + \tan^2 x$	$=\frac{1}{\cos^2 x}$	
	$\arccos x$	-1,1	$\Big]-1,1 \Big[$	$-\frac{1}{\sqrt{1-x^2}}$		
	$\arcsin x$	-1,1	$\Big]-1,1 \Big[$	$\frac{1}{\sqrt{1-x^2}}$		
	$\arctan x$	\mathbb{R}	dérivable	$\frac{1}{1+x^2}$		
	$\mathrm{ch}x$	\mathbb{R}	dérivable	$\mathrm{sh}x$		
	$\operatorname{sh} x$	\mathbb{R}	dérivable	$\mathrm{ch}x$		
	thx	\mathbb{R}	dérivable	$1 - th^2 x$	$= \frac{1}{\cosh^2 x}$	

Autres formules de dérivations à connaitre :

$$(u\pm v)'=u'\pm v' \qquad (\lambda u)'=\lambda u' \qquad (uv)'=u'v+v'u \qquad \left(\frac{1}{u}\right)'=-\frac{u'}{u^2} \qquad \left(\frac{u}{v}\right)'=\frac{u'v-v'u}{v^2}$$

$$v \text{ quelconque } v(x) = \sqrt{x} v(x) = x^n v = \exp v = \ln$$

$$(v \circ u)' = (v' \circ u) \times u' (\sqrt{u})' = \frac{1}{2\sqrt{u}}u' (u^n)' = nu^{n-1}u' (e^u)' = u'e^u (\ln u)' = \frac{u'}{u}$$

Formulaire de primitives usuelles

On note $\int_{-x}^{x} f$ pour désigner une primitive générique de f. Pour les avoir toutes, il faut rajouter une constante d'intégration a priori distincte pour chaque intervalle.

	f(x)	D_f	$\int^x f$	
$(\alpha \in \mathbb{R}, \alpha \neq -1)$	x^{α}	\mathbb{R}_+^*	$\frac{x^{\alpha+1}}{\alpha+1}$	
	$\frac{1}{x}$	\mathbb{R}^*	$\ln x $	
$(n \in \mathbb{N}^*)$	x^n	\mathbb{R}	$\frac{x^{n+1}}{n+1}$	
$(n \ge 2, n \text{ entier})$	$\frac{1}{x^n} = x^{-n}$	\mathbb{R}^*	$\frac{1}{-n+1} x^{-n+1}$	
(similaire pour $x^{\frac{1}{2p}}$)	$\sqrt{x} = x^{\frac{1}{2}}$	\mathbb{R}_{+}	$\frac{2}{3}x^{3/2}$	
(similaire pour $x^{\frac{1}{2p+1}}$)	$\sqrt[3]{x} = x^{\frac{1}{3}}$	\mathbb{R}	$\frac{3}{4}x^{4/3}$	
$(\lambda \neq 0)$	$e^{\lambda x}$	\mathbb{R}	$\frac{1}{\lambda}e^{\lambda x}$	
	$\mathrm{ch}x$	\mathbb{R}	$\mathrm{sh}x$	
	$\mathrm{sh}x$	\mathbb{R}	$\mathrm{ch} x$	
	hx	\mathbb{R}	$\ln(\mathrm{ch}x)$	
$(\lambda \neq 0)$	$\cos(\lambda x)$	\mathbb{R}	$\frac{1}{\lambda}\sin(\lambda x)$	
$(\lambda \neq 0)$	$\sin(\lambda x)$	\mathbb{R}	$-\frac{1}{\lambda}\cos(\lambda x)$	
$D_{\tan} = \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$	$\tan x$	$D_{ an}$	$-\ln \cos x $	
	$-\frac{1}{\sqrt{1-x^2}}$	$\big]-1,1\big[$	$\arccos x$	
	$\frac{1}{\sqrt{1-x^2}}$	$\big]-1,1\big[$	$\arcsin x$	
	$\frac{1}{1+x^2}$	\mathbb{R}	$\arctan x$	

Autres formules de primitivation à connaître : ici, les ... désignent une constante qu'il faut retrouver au cas par cas.

$$\int u'(ax+b) = \dots u(ax+b) \qquad \qquad \boxed{\int \frac{u'}{u} = \ln|u|} \qquad \qquad \int u'e^u = e^u$$